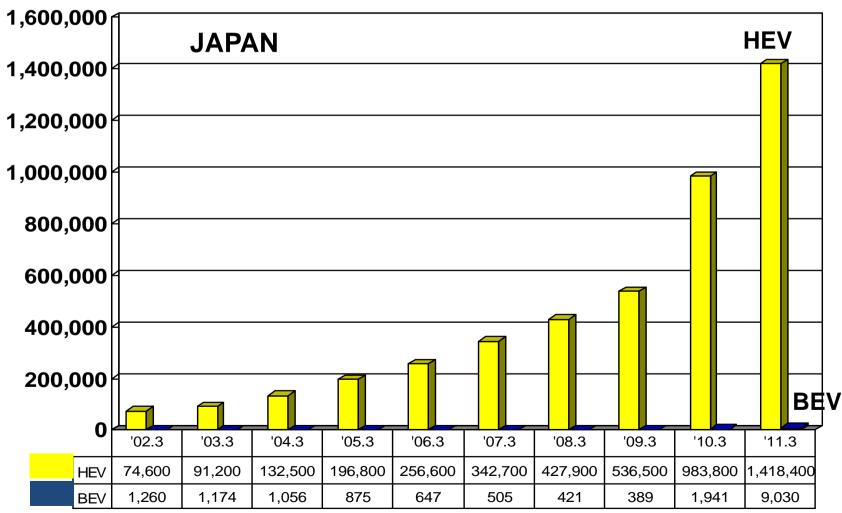
1st. Asia Automobile Institute Summit 26-27 November 2012, Tokyo

The Prospect of International Standardization for Electric Vehicles

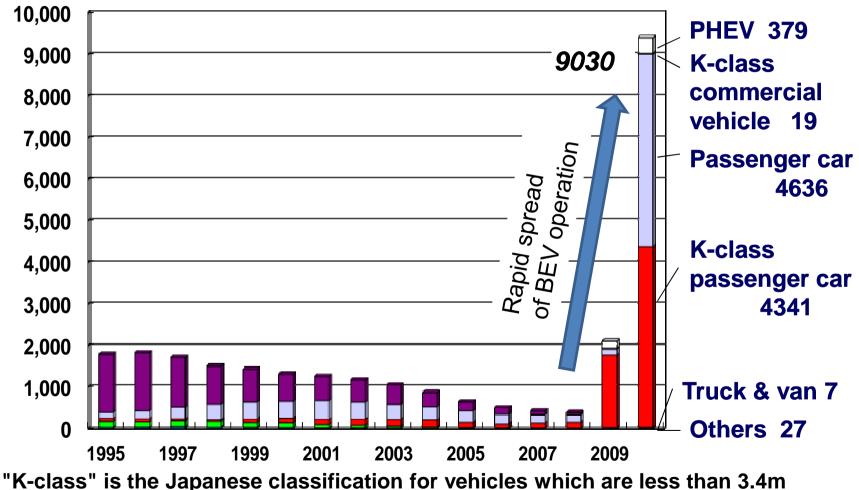
Hidenori TOMIOKA Deputy General Manager FC-EV Research Division Japan Automobile Research Institute


Contents

- 1. Standardization for Automotive Li-ion Batteries
- 2. JARI's Safety Approach for Li-ion Batteries
- 3. Standardization for Battery Charging and JARI's Certification of Charging System

The number of BEV·HEV in operation in Japan Development of international standardization for EV and batteres

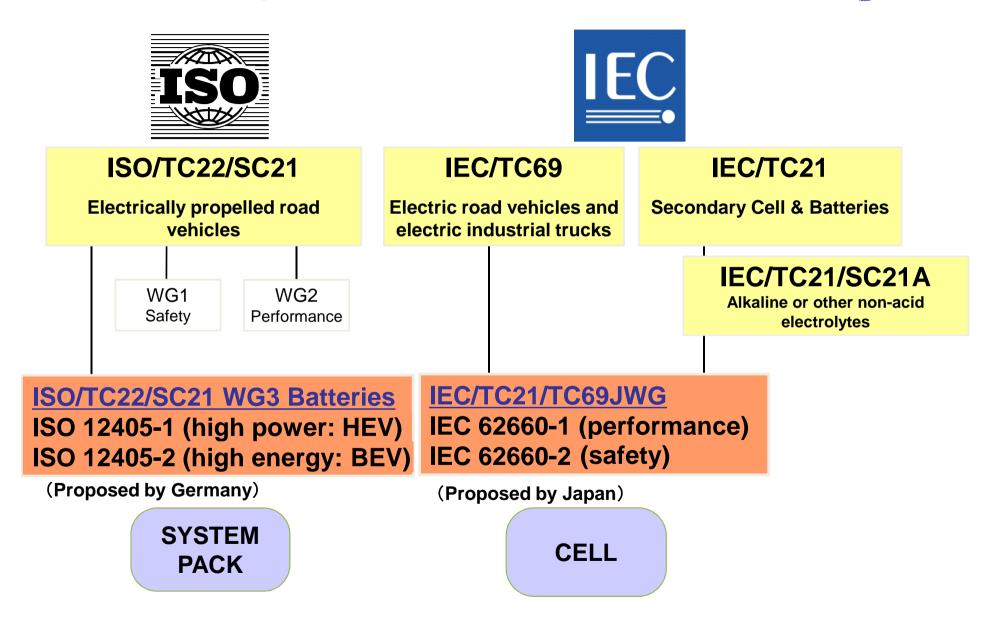
is urgent to match the rapid spread of Electric Vehicles.

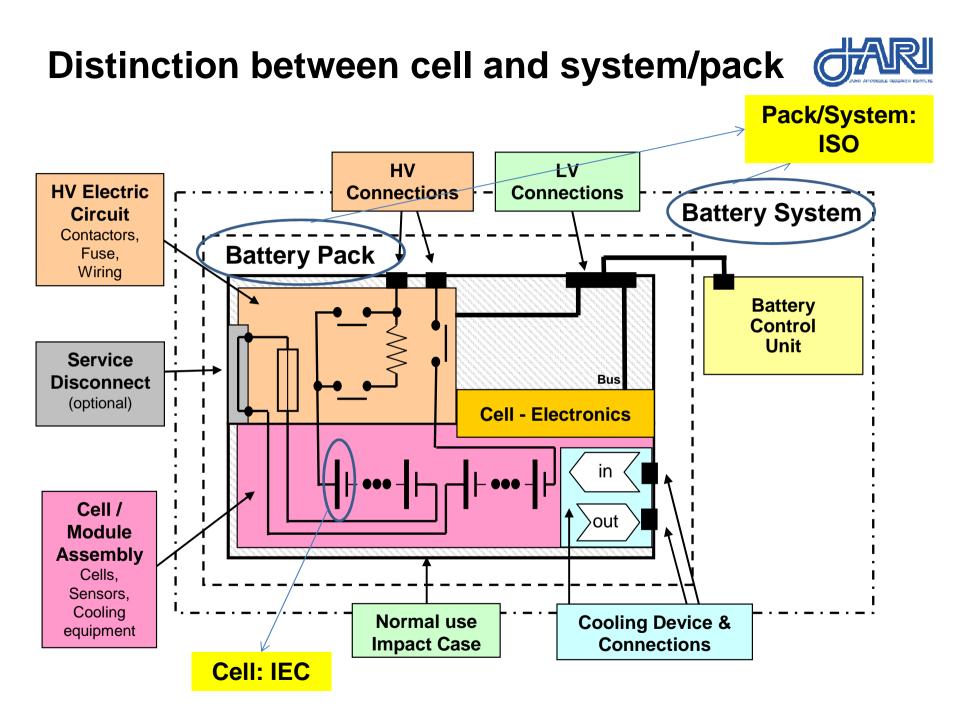


1st. AAI Summit, 26-27 Nov. 2012, Tokyo

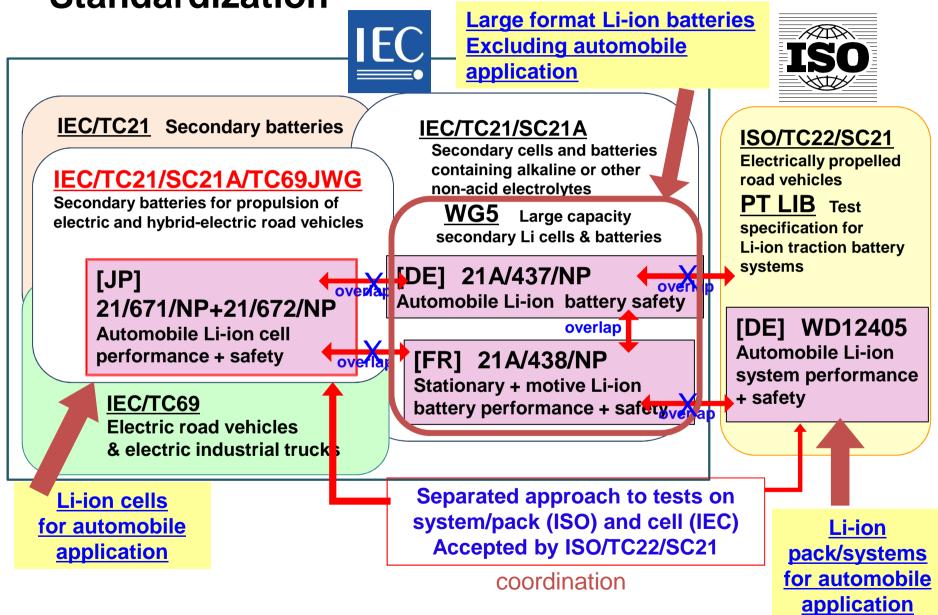
The number of BEV in operation in Japan

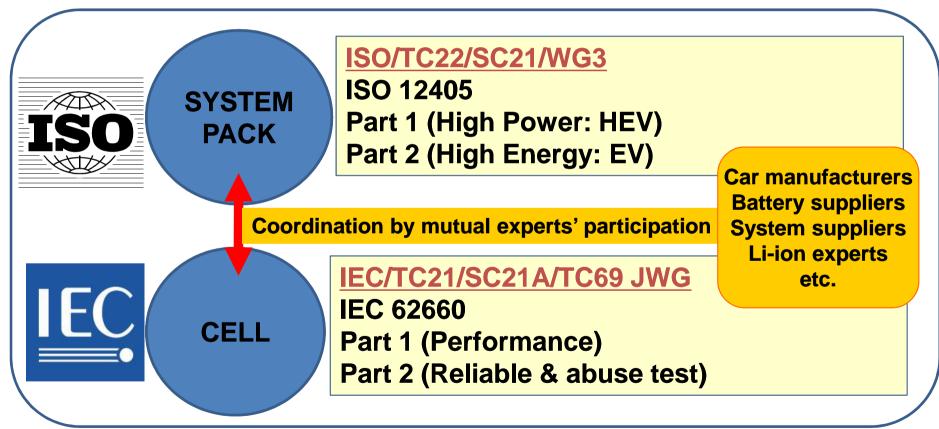
Number of BEV operation has been increased rapidly in these years although the nember itself is not large.


long and with an engine displacement of 660cc or less.


Part 1

Standardization for Automotive Li-ion Batteries


ISO/IEC Project Structure for Li-ion Batteries


Agreement for Automobile Li-ion Battery Standardization

Proposed Framework for the Standardization

IEC 62660-1 and IEC 62660-2 aim to provide specific cell level testing standards to be coupled with system/pack level testing standards. Automobile manufacturers' participation is indispensable to develop effective standards for Li-ion batteries for automobile application.

4 of these standards have been already published.

1st. AAI Summit, 26-27 Nov. 2012, Tokyo

Other standards of Li-ion Batteries for EV Under Development [ISO/TC22/SC21/WG3] Pack/System: ISO12405-3 (Safety Requirement) [IEC/TC69/TC21/SC21A/JWG] Cell: IEC62660-3 (Safety Requirement) (Planned) [ISO/TC22/SC21/WG3 IEC/TC69/TC21/SC21A/JWG Cell: IEC/ISO PAS16898 (Cell size)

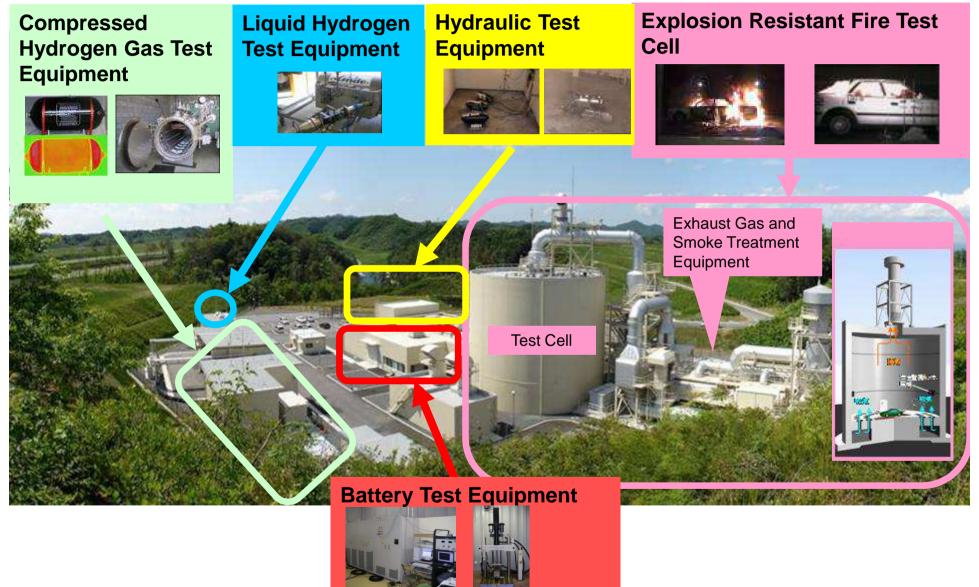
International Standardization of batteries for EV is still going on. Participation of Asian stakeholders is most important.

Part 2

JARI Safety Approach for Li-ion Batteries

Safety Research for FC·EV - Hy-SEF activities

Safety Evaluation for EV, FCV and Hydrogen


- Li-ion Batteries (EV safety)

- Safety of Vehicle & Hydrogen Storage (Property of released hydrogen flame, Safety release method of hydrogen)
- Manuals for vehicle fire accidents (Fire fighting, Rescue, Safety distance)

- FCV Crash Test Procedures

(Hydrogen leakage limit, etc.)

Hy-SEF : Hydrogen and fuel cell vehicle Safety Evaluation Facility

1st. AAI Summit, 26-27 Nov. 2012, Tokyo

Safety Research for Li-ion Battery

1) <u>Investigation of the</u> <u>safety evaluation test</u> <u>items</u>

2) Safety evaluation tests Focusing on the test procedure: Relationship between test conditions and the results Overcharge, overdischarge, short circuit, penetration, crush, vibration, bonfire, etc

3) Proposal for safety evaluation test methods to ISO/IEC

	Battery charge/discharge test unit	Penetration/crush test unit	Environmental test chamber
Specification	Voltage: Max. 500 V Current: Max. 300 A Short circuit current: Max. 5,000 A Voltage and temperature measurement: Each 20 ch.	<u>Penetration</u> Stroke: 150 mm Load: Max. 20 kN Speed: 30 to 250 mm/s <u>Crush</u> Stroke: 300 mm Load: Max. 50 kN	Temperature: -40 to 150 °C Humidity: 20 to 98 %RH
Photograph			

1st. AAI Summit, 26-27 Nov. 2012, Tokyo

The safety evaluation items

Safety evaluation test items				
Electrical tests	Overcharge			
	Overdischarge			
	Short circuit			
	Overvoltage			
Mechanical tests	Penetration			
	Controlled crush			
	Vibration			
	Mechanical shock			
	Drop			
	Dynamic crush			
	Curb crash			
Environmental tests	Immersion			
	High temperature			
	Thermal shock			
	Temperature cycles			
	Dewing			
Fire test	Bonfire			
	Vehicle fire			

Grobal Technical Regulation for Safety

Those data taken at JARI were also provided into UN-ECE and gtr.

[UN-ECE/ TRANS /WP.29/GRSP]

(http://www.unece.org/trans/main/welcwp29.html)

- **Vehicle Regurations**
- -EV, HEV etc. ECE R100, ECE R94&R95 etc. (58 agreement)
- -FCV: HFCV gtr (98 agreement: Under deliberations)

Components

-<u>RESS</u>(Rechargeable Energy Storage Systems): ECE R100 Part2 (Under deliberations)

JARI will be able to provide these technical expertise as a testing agency.

Standardization for Battery Charging and JARI's Certification of Charging System

Infrastructure for EVs in Japan

【 Quick Charger 】 3-phase 200V:20-50kW

1st. AAI Summit, 26-27 Nov. 2012, Tokyo

AC charging interfaces standardization

		China		
	Type1 (Japan)	Type2 (Germany)	Type3 (Italy)	Onina
Phase	Single	Single/Three	Single/Three	Single/Three
Rated Current	32A (single phase) 80A (single, US only)	70A (single phase) /63A (three phase)	32A→63A ? (single/three phase)	70A (single phase) /63A (three phase)
Rated Voltage	250V (300V US only)	480V	250V	220V (single phase)/ 380V (three phase)
# of pins	5	7	4 or 5 (single phase) / 7 (three phase)	7
Scope	Coupler	Coupler, Plug & Socket	Coupler, Plug & Socket	Coupler, Plug & Socket
Compatibility	SAE J1772			
Connector Design	ф43.8	¢56.0		
Locking	Option	Yes	Yes	Yes
Shutter	No	No	Yes	No

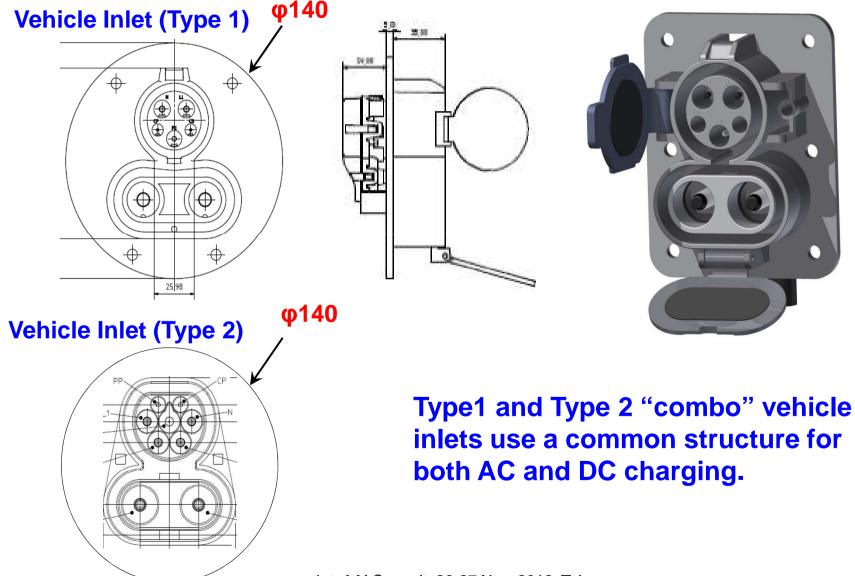
Quick Charger Specifications (for Japanese Market)

Charger Specifications

- Input: 3-phase 200V
- -Maximum DC output power: 50kW
- -Maximum DC output voltage: 500V
- -Maximum DC output current:

125A

5 minute charge for 40km (25 miles) driving range 10 minute charge for 60km (37 miles) driving range



DC charging system

	marging system					
	Japan (CHAdeMO) / China			Germany / US		
	Dedicated charging system			AC/DC combined ("Combo") system		
Vehicle Coupler						
	Japan (CHAdeMO)	China		US	Germany	
	Pure DC	Pure DC		power: AC/DC common	 Low power: AC/DC common High power: AC/DC Combo 	
			·Hign	power: AC/DC Combo		
				tional erminals	Additional DC terminals	

DC charging system / interface standardization

"Combo" vehicle inlet concept of US and Germany

Aspect of standardization for this field

• IEC has not reached the single specification for both AC and DC couplers.

- Interests among the automotive industry, electric power suppliers.
- Differences in the power situation in national and regional areas

Consensus challenges.

It is essential to build a relationship of mutual trust among stakeholders

Interoperability for Charging System

- As for charging system, it needs to have certain interoperability to match each EV and charger.
- It needs to have certification system to establish infrastructure for EV charging system. Otherwise, each charger needs to be checked for each EV.

 JARI has started the certification system for AC charging in Japan. We will be able to support these activities.

Thank you for your attention.

If you have any comments and questions, please feel free to contact me: Hidenori TOMIOKA. mailto: htomioka@jari.or.jp Tel: +81-3-5733-7927