

Safer Cars for ASEAN Region

ASEAN NCAP – Safety Assist and Motorcycle Safety Assessment Protocol and Roadmap

Malaysian Institute of Road Safety Research

GLOBAL

Bloomberg Philanthropies

Four

Introduction to ASEAN NCAP

What is NCAP?

- NCAP stands for "New Car Assessment Programme" .
- NCAP's role is to provide consumer a **realistic** and **independent** assessment on the **safety performance** of • vehicles recently launched in the markets.
- NCAP Family .
 - IIHS
 - 5-Star Safety Ratings (NHTSA)
 - JNCAP
 - ANCAP
 - Euro NCAP
 - KNCAP
 - CNCAP
 - Latin NCAP
 - ASEAN NCAP
 - Bharat NCAP •

Formation of ASEAN NCAP

- 8 December 2011: MoU Signing between Global NCAP and MIROS in New Delhi.
- Objective: to promote a market for safety by raising awareness to the car buying public and encouraging manufacturers to build safer vehicles

NCAP Around the World

#	Est. Year	Countries	#	Est. Year	Countries
1	1999	USA	6	1999	South Korea
2	1978	USA	7	2006	China
3	1991	Japan	8	2010	South America
4	1992	Australia & New Zealand	9	2011	South East Asia Countries
5	1997	FRA, GER, ITA, ESP, SWE, NED, UK (EU)	10	2023	India

Weightage Assessment for 2021-2025

Where are we now?

- As of to date, ASEAN NCAP has assessed and rated 14 models under the 2021-2025 protocol.
- From this number, 10 models were awarded with 5-Star, 3 were rated as 4-Star and 1 model rated as 3-Star.
- The success was based on close collaboration with partners on the development of our 2021-2025 protocol.
- This year marks the mandatory application for e-hailing operators in Malaysia to have their vehicles rated with ASEAN NCAP rating of 3-Star and above in order for them to operate the vehicles as public transportation.

Evolution of ASEAN NCAP Protocol

Active Safety

2012 - 2016

ASSESSMENT

- Effective Braking Avoidance (EBA) ٠
- Seatbelt Reminder (SBR) •
- Blind Spot Technology (BST) ٠

Effective Braking and Avoidance (EBA) • Seatbelt Reminder (SBR) •

2017

- 2020

- **AEB** City
- AFB Inter-Urban •
- Blind Spot Detection System (BSD)/Blind Spot Visualization (BSV)
- Advanced Rear View Mirror (ARV)
- Auto High Beam (AHB)
- Pedestrian Protection

FITMENT

- RCTA
- RCTB
- LKA
- LDW •
- FCW
- **Driver Monitoring**
- AEB Motorcycle

- **Electronic Stability Control** •
- Seatbelt Reminder (SBR)

FITMENT

- **AEB** Inter-Urban
- AEB City ٠
- **AEB VRU** ٠
- Lane Departure Warning System •
- Forward Collision Warning System ٠

2021 - 2025

ASSESSMENT

ASEAN NCAP Testing Protocol – 2021 - 2025

Autonomous Emergency Braking (AEB)

Test	type	Illustration	Test description		
AEB City Stationary low speed	Car drives into stationary vehicle (low speed)		Approaching a stopped vehicle at test speeds from 10 to 60km/h in 5km/h increments.		
AEB Inter-Urban Slower moving	Car drives into slower moving vehicle		Approaching a moving target at 20km/h. Test vehicle speed 30km/h up to 60km/h in 5km/h increments.		

Blind Spot Detection (BSD)

Blind Spot Detection (BSD)

No Warning

Must Give Warning

General inquiries: inquiry@miros.gov.my

Blind Spot Detection (BSD)

False Signal – Must Not Give Warning

Example of BST

Vehicle	А	В	С	D
Model	Mercedes S400	Honda Odyssey EXV	Mazda CX-5 2017	Mazda 3
Body style	4-door sedan	5-door MPV	4-door SUV	4-door sedan
BSM Illustration	8			
Trade Name	Blind Spot Assist (BSA)	Blind Spot Illustration (BSI) System	Blind Spot Monitor (BSM)	Blind Spot Monitor (BSM)
Technology	radar	vision	radar	radar
Sensor Location (s)	Two sensor mounted one in each corner of the rear bumper	Two sensor mounted one in each corner of the rear bumper	Two sensor mounted one in each corner of the rear bumper	Two sensor mounted one in each corner of the rear bumper
BSM Icon			E.C.	
Icon description	LED is a triangular area on end left of the side mirror	LED warning lamp icon integrated to the side mirror face	warning lamp icon integrated to the side mirror face	lighted lamp icon integrated to the side mirror face
Audible warning	none	none	has	has

Blind Spot Visualization (BSV)

Static Position for both test vehicle and subject

The locations of target vehicle must be as follows (in respect to subject vehicle rear);

- a) 30m zone
- b) 20m zone
- c) 10m zone
- d) 3m zone and
- e) Blind spot zone

Blind Spot Visualization (BSV)

Blind Spot Visualization (BSV)

For assessment at night, the test needs to be conducted with a motorcycle with the head-light turned on.

Advanced Rear Visualization (ARV)

15 poles were placed in a straight line with the following adjustment

Advanced Rear Visualization (ARV)

 Vehicle was placed in 1.5 meters from the pole at the start and will move forward in 10, 20 and 30 meters ahead in straight line.

- Subject was asked to identified the pole number within the rear-view mirror without moving his head.
- The same subject was used throughout this assessment

Advanced Rear Visualization (ARV)

Auto High Beam (AHB)

Test	Headlight	Activated Start Speed	Requirement	
	Low to Lligh Doom	< F0 km/h	Must automatically	
Operational Speed	LOW TO HIGH Beam	< 50 km/n	switching	AHB operation speed requirements
Operational Speed	High to Low Room	< E0 km/b	Detect oncoming	
	nigh to LOW Beam	< 50 km/n	vehicle	

Test	Headlight	Lux meter	Distance (m)	Height (cm)	Requirements	Measurement Locations
				25 from	5 Lux (Min)	
		۸	100	ground		Distance
		A	100	110 from	5 Lux (Min)	
Illuminanco	High			ground		*
Inuminance	Beam			25 from	5 Lux (Min)	
		D	100	ground		and B Visibility illuminance measurements, 25cm and 110cm from ground
		D	100	110 from		X is the center of test vehicle
				ground	5 Lux (IVIIN)	Illuminance measurements assessmen

Equivalent Test Procedure

At the request of the manufacturer, the above test set procedure can be replaced by the test procedure described in UNECE Regulation No. 48-06 (or later), section 6.1.9.3.3.2 and UNECE Regulation No. 122-01(or later), section 6.3.3 class B and UNECE Regulation No. 123, section 6.3.2. or or UNECE Regulation No. 149

3.3 m

Auto High Beam (AHB)

ASEAN NCAP Roadmap 2026-2030

ASEAN NCAP Upcoming Roadmap for 2026-2030

ASEAN NCAP recently launched our latest roadmap for 2026-2030 in Jakarta on 15 March 2023.

The roadmap will maintain its 4 assessment pillars (AOP, COP, SA and MS) from the current protocol.

_

Due to significant number of road fatalities involving motorcyclists in the ASEAN region, ASEAN NCAP is keen to further develop the assessment items under the Motorcyclist Safety category.

One aspect that will be considered in the new roadmap is the assessment on how effective is the vehicle in avoiding collision against a motorcyclist.

Scoring Assessment for 2026-2030 Roadmap

2026-2030 Protocol

Active Safety

ASSESSMENT

- i. Effective Braking and Avoidance (EBA)
- ii. Seatbelt Reminder (SBR)
- iii. AEB City
- iv. AEB Inter-Urban
- v. Blind Spot Detection System (BSD)/Blind Spot Visualization (BSV)
- vi. Advanced Rear View Mirror (ARV)
- vii. Auto High Beam (AHB) / Adaptive Driving Beam (ADB)
- viii. Lane Support Assessment (LKA+ LDW)
- ix. Pedestrian Protection
- x. AEB Motorcycle

FITMENT

- i. RCTA
- ii. RCTB
- iii. LKA
- iv. LDW

FCW

- ۷.
 - vi. Driver Monitoring

Example of Assessment

Difference between 2021-2025 vs 2026-2030 Roadmaps

Pillar	Technology	2021-2025	2026-2030
	AEB Inter Urban (CCrm + CCrb)	3.5	5
SA	Lane Support	-	2 (new)
	Advanced SAT	3	2
	Rear View Technology	4	3
MC	AEB MC (Motorcycle)	-	6 (new)
1012	AHB / ADB	2	3
	Advanced MST	Bonus Point - 2	2

OASIM Project (Overall ASEAN market Safety Improvement for Motorcycles)

One aspect that will be considered in the new roadmap is the assessment on how effective is the vehicle in avoiding collision against a motorcyclist.

To achieve this objective, the OASIM project was kicked-off by UTAC on 20th September 2020 in collaboration with MIROS and ASEAN NCAP.

The project used crash data from Thailand and Malaysia to study the feasibility in addressing crash situations with the ADAS systems.

The project was concluded on 9th March 2023 with several key proposals for ASEAN NCAP 2026-2030 test and assessment for motorcycle avoidance.

ASEAN NCAP Motorcycle Target for 2026

A newly developed motorcycle target for ASEAN NCAP assessment dedicated to the Motorcyclist Safety pillar.

- Testing materials
 - ➤ Driving robot
 - Test platform
- Light condition
 - ≻ Day
- Weather condition
 - ➤ Dry surface

Cases/Scenarios for Assessment

CMRm	 Car-to-Motorcycle Rear-end moving
CMFtap	 Car-to-Motorcycle Front Turn Across Path
CMCrossing	 Car-to-Motorcycle Crossing
CMOncoming	 Car-to-Motorcycle Oncoming

VUT

CMRm Car-to-Motorcycle Rear-end moving

			K	-		C	10					CM	IRm
		di l		1								Car to Motorc	ycle Rear-end
												mov	ving
		S	teady speed			s	teady	speed			Paragraph	8.3	3.1
											Type of test	AEB	FCW
		50% impa	ct point		1			25%	impact p	oint	VUT Speed [km/h]	40-60	40-80
Spe	ed		ÂMT		1	Spee	ed		AMT				
(km	/h)) <u>30 45 60 (km/h) 30 45 60</u>		60	VUT direction	Forward							
	40	AEB/FCW	-	-]		40	FCW	-	-			
	45	AEB/FCW	-	-]		45	FCW	-	-	Target speed [km/h]	30,4	5,60
	50	AEB/FCW	-	-	1		50	FCW	-	-			
	55	AEB/FCW	AEB/FCW	-	1		55	FCW	FCW	-	Impact location	50	50 and 25
UT	60	AEB/FCW	AEB/FCW	-	1	VUT	60	FCW	FCW	-	[%VUT width]		
	65	FCW	FCW	-	1		65	FCW	FCW	-	Lighting condition	D	av
	70	FCW	FCW	FCW	1		70	FCW	FCW	FCW	8		
	75	FCW	FCW	FCW		1	75	FCW	FCW	FCW	Number of test	36 speed com	binations (best
	80	FCW	FCW	FCW	1		80	FCW	FCW	FCW		case: 2	2 tests)

*Further work need to be developed to finalize the protocol for the assessment.

CMFtap Car-to-Motorcycle Front Turn Across Path

	CMFtap
	Car to Motorcycle Front Turn Across Path
Paragraph	8.2.2
Type of test	AEB
VUT Speed [km/h]	(2026) 10,20
VUT direction	Farside turn
Target speed [km/h]	30,45,60
Impact location [%VUT width]	50
Lighting condition	Day
Number of test	6 tests

Spe	ed	AMT					
(km/	'n)	30	45	60			
	10	AEB	AEB	AEB			
VUT	20	AEB	AEB	AEB			

CMCrossing Car-to-Motorcycle Crossing

Spe	Speed			
Km	/h	20		
	20	AEB		
	25	AEB		
	30	AEB		
	35	AEB		
VUT	40	AEB		
	45	AEB		
	50	AEB		
	55	AEB		
	60	AEB		

	CMCrossing
	Car-to-Motorcycle Crossing
Paragraph	8.2.3
Type of test	AEB
VUT Speed [km/h]	20-60
VUT direction	Farside and nearside
Target speed [km/h]	20
Impact location	50 -50% motorcycle length
[%VUT width]	
Lighting condition	Day
Number of test	9 speed combinations (best case: 5 tests)

CMOncoming Car-to-Motorcycle Oncoming

Assessment:

- <u>Option 1</u>: warning assessment, pass/fail with maximum intrusion point should be under 20 cm after the lane.
- <u>Option 2 (if ELK realistic*)</u>: pass/fail criteria (fail = collision with target)

	CMOncoming
	Car-to-Motorcycle Oncoming
Paragraph	8.2.6
Type of test	LSS
VUT Speed [km/h]	72
VUT direction	Farside
Target speed [km/h]	60
Impact location	10
[%VUT width]	
Lighting condition	Day
Number of test	4 – 5 tests

*: Emergency Lane Keeping (ELK) may raise issues due to road and traffic conditions and low Electronic Power Steering System (EPS) penetration rate.

Video of the Crash Scenarios

Planning Schedule for New Protocol

• Protocol will be announced by April of 2024

THANK YOU FOR YOUR ATTENTION

Follow Us:

